

Scikit-Quant

Scikit-quant is a collection of optimizers tuned for usage on Noisy
Inter-mediate-Scale Quantum (NISQ) devices.
Results for several VQE and Hubbard model case studies are presented in this
arxiv paper [https://arxiv.org/abs/2004.03004] (final paper was presented at IEEE’s QCE’20).
This is the manual for the software used.

	Changelog

	License and copyright

Getting Started

	Installation

	Trying it out

	Bugs and feedback

Optimizers

	ImFil

	SnobFit

	NOMAD

	PyBobyqa

Interoperability

	Qiskit

	SciPy

Developers

	Repositories

	Test suite

Bugs and feedback

Please report bugs or requests for improvement on the issue tracker [https://github.com/scikit-quant/scikit-quant/issues].

Changelog

2021-03-29: 0.8.2

	Update Qiskit interop to new Optimizer class interface

	Port SQNomad to Windows

	Support more options directly in SQNomad’s Python interface

	Set PyBobyqa’s minimum version to 1.2

2021-03-17: 0.8.1

	Make SQNomad optional (use option [NOMAD]) as it is rather slow to install

2020-11-30: 0.8.0

	Added SQNomand

	Require rpy2 to be installed separately as ORBIT use is uncommon

2020-05-22: 0.7.0

	Added Qiskit interoperability interface

	Added SciPy interoperability interface

	Fixed a couple of logic flow bugs in SnobFit

	Fix number of requests if nreq=1 (SnobFit; Jan Rittig)

	Fix indexing error and double delete in NaN handling (SnobFit; Jan Rittig)

2020-04-28: 0.6.0

	Remove use of numpy.matrix in SQImFil

	Bug fixes in SQCommon and SQSnobFit

	Start of documentation

License and copyright

scikit-quant includes several optimizers with permission of their respective
authors and all files are individually marked as such.
This permission extends to redistribution for academic and personal use.
For commercial use of any of the optimizers, please read the relevant license
and check with original authors where needed.
The translations from MATLAB to Python are derived works and are packaged
independently on PyPI to allow their inclusion/exclusion as needed.

Main scikit-quant code

The following license applies to the common scikit-quant code and any of our
changes/additions.

Copyright (c) 2019-2020, The Regents of the University of California,
through Lawrence Berkeley National Laboratory (subject to receipt of
any required approvals from the U.S. Dept. of Energy). All rights
reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following
conditions are met:

(1) Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
(2) Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
(3) Neither the name of the University of California, Lawrence Berkeley
National Laboratory, U.S. Dept. of Energy nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes,
patches, or upgrades to the features, functionality or performance of
the source code (“Enhancements”) to anyone; however, if you choose to
make your Enhancements available either publicly, or directly to
Lawrence Berkeley National Laboratory, without imposing a separate
written license agreement for such Enhancements, then you hereby grant
the following license: a non-exclusive, royalty-free perpetual license
to install, use, modify, prepare derivative works, incorporate into
other computer software, distribute, and sublicense such Enhancements
or derivative works thereof, in binary and source code form.

Additional copyright holders

In addition to LBNL/UC Berkeley, this package contains files copyrighted by
one or more of the following people and organizations, and licensed under
the same conditions (except for some compatible licenses as retained in the
source code):

	Jan Rittig

	Matthias Degroote

Installation

To install with pip through PyPI [https://pypi.org/project/scikit-quant/], it is recommend to use
virtualenv [https://pypi.python.org/pypi/virtualenv] (or module venv [https://docs.python.org/3/library/venv.html] for modern pythons).
The use of virtualenv prevents pollution of any system directories and allows
you to wipe out the full installation simply by removing the virtualenv
created directory (“WORK” in this example):

$ virtualenv WORK
$ source WORK/bin/activate
(WORK) $ python -m pip install scikit-quant
(WORK) $

Note that SQNomad is optional, as it may take a long time to build on
machines with few cores.
You can either install it directly, using pip, or enable the option:

(WORK) $ python -m pip install scikit-quant[NOMAD]

If you use pip directly on the command line, instead of through
python, make sure that the PATH envar points to the bin directory
that will contain the installed entry points during the installation, as the
build process needs them.
You may also need to install wheel first if you have an older version of
pip and/or do not use virtualenv (which installs wheel by default).
Older versions of pip may also require the --user option, if you do
not have write access to the installation directory.
Example:

$ python -m pip install wheel --user
$ PATH=$HOME/.local/bin:$PATH python -m pip install scikit-quant --user

Alternatively, you can use pip from a conda environment:

$ conda create -n WORK
$ conda activate WORK
(WORK) $ python -m pip install scikit-quant
(WORK) $

Trying it out

This is a basic guide to using the optimizers mainly intended to test whether
your installation works.
If you are already familiar to using optimizers within a quantum programming
framework, you may be better served using the interoperability interfaces, such
as the ones to Qiskit and SciPy.

First, you need to have some objective function to optimize.
All the optimizers are minimizers and expect to do simple “less than”
comparisons on the result.
Thus, if instead you need to maximize the result, simply add a minus sign.
The objective function is expected to accept an evaluation point in the form
of a numpy array of floating point values, or a list of such evaluation
points to allow evaluation in parallel.

Example of an objective function:

import numpy as np

some interesting objective function to minimize
def objective_function(x):
 fv = np.inner(x, x)
 fv *= 1 + 0.1*np.sin(10*(x[0]+x[1]))
 return np.random.normal(fv, 0.01)

All optimizers provided require bounds.
This is not true for optimizers in general, but is of such great benefit when
dealing with noisy objective functions that it is pretty much a requirement.
In most cases, the better the bounds, the faster the optimizer will run and
the higher the quality of the result.
For difficult problems, it may be necessary to refine bounds while switching
optimizers to solve.
Not all optimizers are equally sensitive to bounds.

create a numpy array of bounds, one (low, high) for each parameter
bounds = np.array([[-np.pi, np.pi], [-np.pi, np.pi]], dtype=float)

Likewise, consider whether a good initial estimate can be provided, and if
yes, it is often worthwhile to spend some (classical) computational resources
to obtain a high quality initial estimate.
Not every optimizer benefits equally of a good initial estimate, but most do,
especially when combined with tight bounds.
If no initial estimate is provided, a random point is used within the given
bounds.

initial values for all parameters
x0 = np.array([0.5, 0.5])

The objective function is considered expensive to calculate (running a
circuit many times on the QPU).
It is therefore important to consider a budget (number of allowed
evaluations), rather than to rely solely on convergence criteria, especially
since tight tolerances can not alway be met in the case of large noise.
The budget is always an upper limit: if convergence happens earlier, the
minimizer will stop.

budget (number of calls, assuming 1 count per call)
budget = 100

Finally, import and run the minimizer.
The result object will contain the optimal parameters (result.optpar) and
optimal value (result.optval).
The history object contains the full call history.

from skquant.opt import minimize

method can be ImFil, SnobFit, NOMAD, Orbit, or Bobyqa (case insensitive)
result, history = \
 minimize(objective_function, x0, bounds, budget, method='imfil')

Bugs and feedback

Please report bugs, ask questions, request improvements, and post general
comments on the issue tracker [https://github.com/scikit-quant/scikit-quant/issues].

ImFil

Implicit Filtering (ImFil) is an algorithm designed for problems
with local minima caused by high-frequency, low-amplitude noise and with an
underlying large scale structure that is easily optimized.
ImFil uses difference gradients during the search and can be considered as an
extension of coordinate search.
In ImFil, the optimization is controlled by evaluating the objective function
at a cluster (or stencil) of points within the given bounds.
The minimum of those evaluations then drives the next cluster of points,
using first-order interpolation to estimate the derivative, and aided by
user-provided exploration directions, if any.
Convergence is reached if the “budget” for objective function evaluations is
spent, if the smallest cluster size has been reached, or if incremental
improvement drops below a preset threshold.

The initial clusters of points are almost completely determined by the
problem boundaries, making ImFil relatively insensitive to the initial
solution and allows it to easily escape from local minima.
Conversely, this means that if the initial point is known to be of high
quality, ImFil must be provided with tight bounds around this point, or it
will unnecessarily evaluate points in regions that do not contain the global
minimum.

As a practical matter, for the noisy objective functions we studied, we find
that the total number of evaluations is driven almost completely by the
requested step sizes between successive clusters, rather than finding
convergence explicitly.

We have rewritten the original ImFil MATLAB implementation in Python

Reference:
C.T. Kelley, “Implicit Filtering”, 2011, ISBN: 978-1-61197-189-7

Original software available at http://ctk.math.ncsu.edu/imfil.html

SnobFit

Stable Noisy Optimization by Branch and FIT (SnobFit) is an
optimizer developed specifically for optimization problems with noisy and
expensive to compute objective functions.
SnobFit iteratively selects a set of new evaluation points such that a balance
between global and local search is achieved, and thus the algorithm can escape
from local optima.
Each call to SnobFit requires the input of a set of evaluation points and
their corresponding function values and SnobFit returns a new set of points to
be evaluated, which is used as input for the next call of SnobFit.
Therefore, in a single optimization, SnobFit is called several times.
The initial set of points is provided by the user and should contain as many
expertly chosen points as possible (if too few are given, the choice is a
uniformly random set of points, and thus providing good bounds becomes important).
In addition to these points, the user can also specify the uncertainties
associated with each function value.
We have not exploited this feature in our test cases, because although we know
the actual noise values from the simulation, properly estimating whole-circuit
systematic errors from real hardware is an open problem.

As the name implies, SnobFit uses a branching algorithm that recursively
subdivides the search space into smaller subregions from which evaluation
points are chosen.
In order to search locally, SnobFit builds a local quadratic model around the
current best point and minimizes it to select one new evaluation point.
Other local search points are chosen as approximate minimizers within a trust
region defined by safeguarded nearest neighbors.
Finally, SnobFit also generates points in unexplored regions of the parameter
space and this represents the more global search aspect.

We have rewritten the original SnobFit MATLAB implementation in Python

Reference: W. Huyer and A. Neumaier, “Snobfit - Stable Noisy Optimization by
Branch and Fit”, ACM Trans. Math. Software 35 (2008), Article 9.

Original software available at http://www.mat.univie.ac.at/~neum/software/snobfit

NOMAD

NOMAD, or “Nonlinear Optimization by Mesh Adaptive Direct Search (MADS)” is a
C++ implementation of the MADS algorithm.
MADS searches the parameter space by iteratively generating a new sample
point from a mesh that is adaptively adjusted based on the progress
of the search. If the newly selected sample point does not improve the current
best point, the mesh is refined. NOMAD uses two steps ({em search} and
{em poll}) alternately until some preset stopping criterion (such
as minimum mesh size, maximum number of failed consecutive trials, or maximum
number of steps) is met.
The search step can return any point on the current mesh, and therefore offers no
convergence guarantees. % if the objective function results are noisy.
If the search step fails to find an improved solution, the poll step is used to
explore the neighborhood of the current best
solution. The poll step is central to the convergence analysis of NOMAD, and
therefore any hyperparameter optimization or other tuning to make progress should
focus on the poll step.
Options include: poll direction type (local model, random, uniform angles,
etc.), poll size, and number of polling points.

The use of meshes means that the number of evaluations needed scales at least
geometrically with the number of parameters to be optimized.
It is therefore important to restrict the search space as much as possible
using bounds and, if the science of the problem so indicates, give preference
to polling directions of the more important parameters.

We incorporate the published open-source NOMAD code through a modified Python
interface.

Reference: S. Le Digabel. “NOMAD: Nonlinear Optimization with the MADS
algorithm.” ACM Trans. on Mathematical Software, 37(4):44:1–44:15, 2011.

Software available at: https://www.gerad.ca/nomad/

PyBobyqa

BOBYQA (Bound Optimization BY Quadratic Approximation) has been
designed to minimize bound constrained black-box optimization problems.
BOBYQA employs a trust region method and builds a quadratic approximation in
each iteration that is based on a set of automatically chosen and adjusted
interpolation points.
New sample points are iteratively created by either a “trust region” or an
“alternative iterations” step.
In both methods, a vector (step) is chosen and added to the current iterate to
obtain the new point.
In the trust region step, the vector is determined such that it minimizes the
quadratic model around the current iterate and lies within the trust region.
It is also ensured that the new point (the sum of the vector and the current
iterate) lies within the parameter upper and lower bounds.
BOBYQA uses the alternative iteration step whenever the norm of the vector is
too small, and would therefore reduce the accuracy of the quadratic model.
In that case, the vector is chosen such that good linear independence of the
interpolation points is obtained.
The current best point is updated with the new point if the new function value
is better than the current best function value.
Note that there are some restrictions for the choice of the initial point due
to the requirements for constructing the quadratic model.
BOBYQA may thus adjust the initial automatically if needed.

Although it is not intuitively obvious that BOBYQA would work well on noisy
problems, we find that it performs well in practice if the initial parameters
are quite close to optimal and the minimum and maximum sizes of the trust
region are properly set.
This is rather straightforward to do for the specific case of VQE, where a
good initial guess can be obtained relatively cheaply from classical simulation.
For Hubbard model problems, which have many (shallow) local minima, BOBYQA
does not perform nearly as well.

We use the existing PyBobyqa implementation directly from PyPI.

Reference: Coralia Cartis, et. al., “Improving the Flexibility and Robustness of
Model-Based Derivative-Free Optimization Solvers”, technical report,
University of Oxford, (2018).

Software available at http://github.com/numericalalgorithmsgroup/pybobyqa/

Qiskit

A set of interoperable components for Qiskit Aqua’s optimizer package are
available in skquant.interop.qiskit.
These classes derive from Qiskit’s Optimizer class and implement the
same interface, such that the skquant optimmizers can be used as drop-in
replacements in Qiskit-based codes.

Caution

The optimizer classes in Qiskit’s Optimizer package do not follow
proper conventions themselves.
In writing the interop component classes, an attempt was made to stick
to the most prevalent conventions present as of Aqua version 0.7.1.

Example usage:

from skquant.interop.qiskit import SnobFit

x0 = np.array([0.5, 0.5])
bounds = np.array([[-1, 1], [-1, 1]], dtype=float)

optimizer = SnobFit(maxfun=40, maxmp=len(x0)+6)

ret = optimizer.optimize(num_vars=len(x0),
 objective_function=your_objective,
 variable_bounds=bounds,
 initial_point=x0)

Available component classes are ImFil, SnobFit, Nomad, and
PyBobyqa.

SciPy

A set of interoperable methods for SciPy’s optimizer package are available in
skquant.interop.scipy.
These methods follow the SciPy convention, allowing them to be passed to its
minimize function, such that the skquant optimmizers can be used as
drop-in replacements in SciPy-based codes

Example usage:

from skquant.interop.scipy import imfil
from scipy.optimize import minimize

x0 = np.array([0.5, 0.5])
bounds = np.array([[-1, 1], [-1, 1]], dtype=float)
budget = 40

result = minimize(your_objective, x0, method=imfil,
 bounds=bounds, options={'budget' : budget})

The returned result is a scipy.optimize.OptimizeResult object and
follows the same conventions for all return parameters that make sense.
Available component classes are imfil, snobfit, and pybobyqa.

Repositories

The developers repository is on github [https://github.com/scikit-quant/scikit-quant].

Test suite

All packages have a test subdirectory that contains tests runnable by
pytest.
In addition, the top-level test has a test_all.sh bash script to
walk the directories and run all tests.

To install pytest:

$ python -m pip install pytest

and to run any test, simply enter the test subdirectory and run:

$ pytest

Some commonly used pytest parameters:

-h : print help

-x : stop on the first failing test
-v : verbose
-s : show captured output

<file name> : run only tests from <file name>
-k <expr> : run only tests containing <expr> in their name

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Scikit-Quant

 		
 Changelog

 		
 2021-03-29: 0.8.2

 		
 2021-03-17: 0.8.1

 		
 2020-11-30: 0.8.0

 		
 2020-05-22: 0.7.0

 		
 2020-04-28: 0.6.0

 		
 License and copyright

 		
 Main scikit-quant code

 		
 Additional copyright holders

 		
 Installation

 		
 Trying it out

 		
 Bugs and feedback

 		
 ImFil

 		
 SnobFit

 		
 NOMAD

 		
 PyBobyqa

 		
 Qiskit

 		
 SciPy

 		
 Repositories

 		
 Test suite

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

